当前位置: 首页 > 数据库 > 存储技术 > 正文

朴素贝叶斯分类算法的原理与实践

时间:2016-01-21

今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。

一个简单的例子

朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下:

这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。

举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。

后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式:

这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是

有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

朴素贝叶斯分类器

讲了上面的小故事,我们来朴素贝叶斯分类器的表示形式:

当特征为为x时,计算所有类别的条件概率,选取条件概率最大的类别作为待分类的类别。由于上公式的分母对每个类别都是一样的,因此计算时可以不考虑分母,即

朴素贝叶斯的朴素体现在其对各个条件的独立性假设上,加上独立假设后,大大减少了参数假设空间。  

 

在文本分类上的应用

文本分类的应用很多,比如垃圾邮件和垃圾短信的过滤就是一个2分类问题,新闻分类、文本情感分析等都可以看成是文本分类问题,分类问题由两步组成:训练和预测,要建立一个分类模型,至少需要有一个训练数据集。贝叶斯模型可以很自然地应用到文本分类上:现在有一篇文档d(Document),判断它属于哪个类别ck,只需要计算文档d属于哪一个类别的概率最大:

在分类问题中,我们并不是把所有的特征都用上,对一篇文档d,我们只用其中的部分特征词项<t1,t2,...,tnd>(nd表示d中的总词条数目),因为很多词项对分类是没有价值的,比如一些停用词“的,是,在”在每个类别中都会出现,这个词项还会模糊分类的决策面,关于特征词的选取,我的这篇文章有介绍。用特征词项表示文档后,计算文档d的类别转化为:

注意P(Ck|d)只是正比于后面那部分公式,完整的计算还有一个分母,但我们前面讨论了,对每个类别而已分母都是一样的,于是在我们只需要计算分子就能够进行分类了。实际的计算过程中,多个概率值P(tj|ck)的连乘很容易下溢出为0,因此转化为对数计算,连乘就变成了累加: